	SEMIESTE	1 1				
Course Code	Course Title	C	L	T/SLr	P/R	Ty/Lb/ETL
BEN17001	TECHNICAL ENGLISH -I	2	1	0/0	2/0	Ty
BMA17001 BMA17002	MATHEMATICS – I/ BIO MATHEMATICS (FOR BIOTECH)	4	3	1/0	0/0	Ту
BPH17001	ENGINEERING PHYSICS	3	2	0/1	0/0	Ty
BCH17001	ENGINEERING CHEMISTRY –I	3	2	0/1	0/0	Ty
BES17001	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	3	2	0/1	0/0	Ту
BES17002	BASIC MECHANICAL & CIVIL ENGINEERING	3	2	0/1	0/0	Ту
	ANNUAL PATTERN (PRACTI	(CALS)*			
BES17ET1	BASIC ENGINEERING GRAPHICS	2	1	0/0	2/0	ETL
BPH17L01	ENGINEERING PHYSICS LAB	1	0	0/0	2/0	Lb
BCH17L01	ENGINEERING CHEMISTRY LAB	1	0	0/0	2/0	Lb
BES17L01	BASIC ENGINEERING WORSHOP	1	0	0/0	2/0	Lb
BES17ET2	C PROGRAMMING AND LAB	2	1	0/0	2/0	ETL
BES17ET3	ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB	1	0	0/0	2/0	ETL

Credits Sub Total:26

SEMESTER - II

	SENIESTE	IZ — 11				
Course Code	Course Title	C	L	T/SLr	P/R	Ty/Lb/ETL
BEN17002	TECHNICAL ENGLISH – II	2	1	0/0	2/0	Ty
BMA17003 BMA17004	MATHEMATICS – II / BIO STATISTICS (FOR BIOTECH)	4	3	1/0	0/0	Ту
BPH17002	MATERIAL SCIENCE	3	2	0/1	0/0	Ty
BCH17002	ENGINEERING CHEMISTRY – II	3	2	0/1	0/0	Ty
BES17003	ENVIRONMENTAL SCIENCE	3	3	0	0/0	Ty

Credits SubTotal:15

C: Credits L: Lecture T: Tutorial S.Lr: Supervised Learning P: Problem / Practical R: Research Ty/Lb/ETL

: Theory /Lab/Embeddded Theory and Lab * Internal Evaluation

I SEMESTER

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus DEPARTMENT OF ENGLISH

Subject Code:	Subject Name: TECHNICAL ENGLISH - I	C	L	T/SLr	P/R
BEN17001	Prerequisite : None	2	1	0/0	2/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

Approval

- 1. Strengthen their vocabulary in both technical and business situations
- 2. Get practice in functional grammar
- 3. Learn the effective way of corresponding with officials
- 4. Learn to give instructions, suggestions, recommendations and comprehend and infer the information from the given passages.
- 5. Strain learners in organized academic and professional writing in LSRW skills

COURSE OUTCOMES (Cos): (3-5)Students completing the course were able to

Budents co	impleting the	course wer	c doic to											
CO1	Strengthe	n their act	ive and t	echnic	al vocab	ulary								
CO2	Understa	nd function	nal gram	mar aı	nd gain p	oroficie	ncy i	n teo	chnical	writing				
CO3		appropria tisement a						bus	iness let	ters and	pre	pare	oneself	to read
CO4		give ins			-	recon	ımer	ndati	ions an	d comp	orehe	end	and inf	fer the
CO5	Focus on	academic a	and techr	nical w	riting									
Mapping	of Course	Outcome	s with Pr	ogran	n Outcor	nes (PC	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC)7	PO8	PO9	PO	10	PO11	PO12
CO1				Н							Н			H
CO2				Н							Н			H
CO3				Н		M				H	Н			H
CO4				Н						H	Н			H
CO5				Н						H	Н			H
H/M/L in	dicates str	ength of c	orrelatio	n H	– High,	$\overline{M-M}$	ediu	m, I	L – Lov	v	•	•		
Category	Basic	Engg	Humanit		Program	Progra		Ope		Practica	1/	Interi	nships /	Soft
	Sciences	Sciences	& Social		core	Electiv	es	Ele	ctives	Project		Tech		Skills
			Sciences	· _				-			;	Skills	8	
			V			İ		1						

BEN17001 TECHNICAL ENGLISH I 2 1 0/0 2/0

1. Vocabulary, Grammar and Usage - I

Meanings of words and phrases, synonyms and antonyms – affixes: prefixes and suffixes and word formation – nominal compounds, expanding using numbers and approximation – Verb: tense, auxiliary and modal –Voice: active, passive and impersonal passive

2. Vocabulary, Grammar and Usage – II

(6)

Infinitives and Gerunds – preposition, prepositional phrases, preposition + relative pronoun-'If' clause, sentences expressing 'cause and effect', 'purpose',

Instructions, suggestions and recommendations

3. Reading

(6)

Questions: Wh-pattern, Yes/no questions, tag questions

Comprehension: extracting relevant information from the text, by skimming and scanning and inferring, identifying lexical and contextual meaning for specific information, identifying the topic sentence and its role in each paragraph, comprehending the passage and answering questions - Précis writing

4. Writing (6)

Adjectives: degrees of comparison Concord: subject-verb agreement

Interpretation of tables and flowcharts: writing a paragraph based on information provided in a table using comparison and contrast, classifying the data and flowchart, describing logical steps involved in specific functions, note - making from a given passage- letter writing, formal: seeking permission to undergo practical training, letter to an editor of a newspaper complaining about civic problems and suggesting suitable solutions

6. Functional English and Practical Components

(6)

Listening: Listening to stories, conversation, dialogue, speeches of famous people, and identifying the grammar components

Speaking: Scripting and enacting role plays/ narrating incidents

Reading: Review of books, articles, fiction- Extensive reading/ user manuals, pamphlets, brochures

Writing: paragraph and essay writing using academic vocabulary

Total No of Periods: 30

Text Book

PadmasaniKannan.S ,Anuradha. V,ChandrasenaRajeswaran.M: Quest:A Textbook of 1. Pushkala. R, Communication Skills, Vijay Nicole

References

- 1. Pushkala R, P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
- 2. PadmasaniKannan.S., Pushkala.R.: Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al,, English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Resources

- https://learnenglish.britishcouncil.org
- www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html
- 4. www.better-english.com/grammar/preposition.html
- 5. http://www.e-grammar.org/infinitive-gerund/
- 6. www.idiomsite.com/

DEPARTMENT OF MATHEMATICS

Subject (Subject	Name:	MATH	EMATICS	5 – I			C	L	T/	SLr	P/R
BMA17 (001	Prerequ	isite : N	one					4	3	1	L/ 0	0/0
					Learning ory and La		ect	R : F	Researc	h C: Cr	edits		
OBJECT	IVES:												
		sic concep											
		c concepts											
		solve prob			ometry rentiation								
					of Several	variable	es						
COURSI	E OUTO	COMES (Cos) : (3	(3-5)									
		the course											
CO1	Find th	ne summa	tion of t	he given	series								
CO2		orm a n	on – d	iagonal	matrix i	nto an	equi	ivale	nt diaş	gonal m	atrix u	sing ort	hogonal
CO3	Find e				function i	nto an i	nfini	ite se	ries an	d to sepa	rate a c	complex f	unction
CO4		knowledg a of the gi			n finding	the deriv	ativ	e of	given fı	inction a	nd to fi	ind the m	axima /
CO5	Evalua	te the par	tial / tot	al differ	entiation a	nd maxi	ma	/ min	ima of	a functio	on of sev	veral vari	ables.
Mapping	of Cou	rse Outco	mes wit	h Progra	am Outco	mes (PC) s)						
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PC)7	PO8	PO9	PO1	PO11	PO12
Os											0		
CO1	H	L			M	M				H	H		H
CO2	H	M			H	L							H
CO3	M	L			M					M	H		L
CO4		L			L					M	H		M
CO5		L		<u> </u>		M				M	M		H
					H – High,						T	. ,	I a c
Category	Basic Science	Engg Science	es & S	manities Social ences	Program core	Program Elective		Ope Elec	en etives	Practic al / Project	Interns Techni	hips / cal Skills	Soft Skills
	V		Ser							110,000			
	1 V												

BMA17002 MATHEMATICS – I 4 3 1/0 0/0

1. ALGEBRA (12)

Binomial, Exponential, Logarithmic Series (without proof of theorems) – Problems on Summation, Approximation and Coefficients.

2. MATRICES (12)

Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values – Cayley - Hamilton theorem(without proof) – Orthogonal reduction of a symmetric matrix to Diagonal form.

3.TRIGONOMETRY (12)

Expansions of Sin n θ , Cos n θ in powers of Sin θ and Cos θ – Expansion of Tan n θ – Expansions of Sin n θ and Cos n θ in terms of Sines and Cosines of multiples of θ – Hyperbolic functions – Separation into real and imaginary parts.

4. DIFFERENTIATION (12)

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function – Leibnitz theorem(without proof) – Maxima and Minima – Points of inflection.

5. FUNCTIONS OF SEVERAL VARIABLES

(12)

Partial derivatives – Total differential – Differentiation of implicit functions – Taylor's expansion – Maxima and Minima by Lagrange's Method of undetermined multipliers – Jacobians.

Total no. of periods: 60

Text Books

- 1. Kreyszig E., Advanced Engineering Mathematics (10 th ed.), John Wiley & Sons, (2011).
- 2. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- **2.** John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, *Engineering Mathematics Vol. I (4th Revised ed.)*, S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, *Higher Engineering Mathematics* (5th ed.), Elsevier Ltd, (2006).

DEPARTMENT OF MATHEMATICS

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits T/L/ETL: Theory / Lab / Embedded Theory and Lab OBJECTIVES: 1. Use the Basic concepts in Matrices 2. Understand the Basic concepts in Integration 3. Understand the Basic concepts in Integration 4. Apply the Basic concepts in Integration 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO1 H L M M M H L M H CO2 H M M H L M M M H H H CO3 M L L M M M H L M CO4 L L L M M M H L M CO5 L L L M M M H M H H CO5 L L L M M M M H M H CO6 L L L M M M M H M M M H CO7 L L L M M M M M M M M M M M M M M M M	Subject 0		Subject	Name :I	BIO MA	THEM	ATICS		С	L	T/SLr		P/R
T/L/ETL: Theory / Lab / Embedded Theory and Lab OBJECTIVES: 1. Use the Basic concepts in Matrices 2. Understand the Basic concepts in Integration 3. Understand the Basic concepts in Interpolation 5. Analyze the Basic concepts in Interpolation 6. Apply the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1			Prerequi	isite : No	one				4	3	1/0		0/0
OBJECTIVES: 1. Use the Basic concepts in Matrices 2. Understand the Basic concepts in Differentiation 3. Understand the Basic concepts in Integration 4. Apply the Basic concepts in Integration 5. Analyze the Basic concepts in Interpolation 5. Analyze the Basic concepts in Interpolation COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1	L : Lectu	re T : Tuto	rial SLr :	Supervi	sed Lea	arning F	: Project	R : Resear	ch C:	Credi	ts		
1. Use the Basic concepts in Matrices 2. Understand the Basic concepts in Differentiation 3. Understand the Basic concepts in Integration 4. Apply the Basic concepts in Integration 5. Analyze the Basic concepts in Interpolation 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 − 5) Students completing the course were able to CO1	T/L/ETL	: Theory /	Lab / Eml	oedded 7	Γheory	and Lat)						
2. Understand the Basic concepts in Differentiation 3. Understand the Basic concepts in Interpration 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO5/P L L M M H L CO4 L L L M M H L CO5 L L L M M H L CO5 L L L M M H L CO6 L L L M M H L CO7 Sciences	OBJECT	IVES:											
3. Understand the Basic concepts in Integration 4. Apply the Basic concepts in Interpolation 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO1 H L L M M M H H H H CO2 H M M L M H L H CO3 M L M M H L H CO4 L L L M M M H H H CO5 L L L M M M H H CO5 L L L M M M H H CO6 L L L L M M M H H CO7 Basic Sciences Sc													
4. Apply the Basic concepts in Interpolation 5. Analyze the Basic concepts in Numerical Differentiation and Integration COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) CO5/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO10 PO10 PO11 PO12 PO10 PO11 PO12 PO10 PO11 PO10 PO10													
COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point of Course Outcomes with Program Outcomes (POs) COs/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO1 H L M M M H H H CO2 H M M H L H CO3 M L M H L CO4 L L L M M M H L CO5 L L M M M M H H H/M/L indicates strength of correlation H – High, M – Medium, L – Low Category Basic Sciences Science						n							
COURSE OUTCOMES (Cos): (3 – 5) Students completing the course were able to CO1 Find the sum, difference, product and inverse of matrixes CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) COS/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Os CO1 H L M M M H H H H CO2 H M M H L H CO3 M L M M H L M CO4 L L L M M M H L L CO5 L L M M M H H H H/M/L indicates strength of correlation H – High, M – Medium, L – Low Category Basic Engg Humanities & Sciences & S						fferentis	ation and I	ntegration					
Students completing the course were able to	C. Hilary	ac the Busic	concepts	ii i (uiiic)	ricui Di	1101 01101	ation und 1	inegration					
Find the sum, difference, product and inverse of matrixes					(i)								
CO2 Find the derivative of the given function and to find the maxima / minima of the given function. CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) COs/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Os CO1 H L M M M H H H CO2 H M M H L CO3 M L M H L CO4 L L L M M M H H CO5 L L L M M M M H H CO5 L L L M M M M H H CO5 L L L M Program													
CO3 Integrate the given function by using the methods of integration and to find area under the given curve and the volume of the solid by revolution. CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) COs/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 OS CO1 H L M M M H H H CO2 H M M H L H CO3 M L M H L M M H L CO4 L L L M M M H H L CO5 L L L M M M M H H H CO5 L L L M M M M H H H/M/L indicates strength of correlation H – High, M – Medium, L – Low Category Basic Engg Humanities Sciences Sciences Sciences Sciences Sciences Relectives Electives Project Technical Skills													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO2	Find the d	erivative o	of the giv	en func	tion and	l to find the	e maxima /	minim	a of th	e given func	tion.	
CO4 Evaluate the value of function at the given point and to find the polynomial expressions of the given function. CO5 Find the differentiation of a function at the given point and to find the integration of the given function at the given point Mapping of Course Outcomes with Program Outcomes (POs) COs/P PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Os CO1 H L M M M H H L CO2 H M M H L CO3 M L M M M H H L CO4 L L M M M H H CO5 L L L M M M H H H/M/L indicates strength of correlation H − High, M − Medium, L − Low Category Basic Sciences Sc	CO3	Integrate t	he given f	unction l	by using	g the me	thods of in	tegration a	nd to f	ind ar	ea under the	given cı	irve and
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		the volume	e of the sol	id by rev	olution	1.							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO4		the value	of func	tion at	the giv	en point a	nd to find	the po	olynon	nial expressi	ons of t	ne given
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		function.											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO5	Find the d	ifferentiat	ion of a f	function	at the	given noin	t and to fin	d the i	ntegra	tion of the gi	ven func	tion at
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	005				uncuoi	1 41 1110	gr ven pom	t dire to iii		ivegi u	01 1110 81	· cm rume	tion at
Os CO1 H L M M H H H H CO2 H M H L H H H H H H H H H H CO3 M L L M M H H L L L L L M M H	Mapping			with Pr	ogram	Outcon	nes (POs)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	PO10	PO11	PO12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Os												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						M	M			H	H		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							L						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						L							
Category Basic Sciences Engg Sciences Humanities & Social Sciences Program Core Sciences Open Electives Practical / Electives Internships / Technical Skills Soft Skills										M	M		H
Sciences Sciences & Social Sciences Core Electives Project Technical Skills												1	
Sciences Skills √	Category	1				~						Soft Sk	alls
√		Sciences	Sciences				Liectives	Liccuves	110]6	A.			
Approval		$\sqrt{}$											
	Approva	i						•	•				

BMA17002 BIO MATHEMATICS 4 3 1/0 0/0

1. MATRICES (12)

Elementary operations on Matrices – Inverse of a Matrix – Solving simultaneous equations (atmost three equations with three unknowns) using Cramer's rule.

2. DIFFERENTIATION (12)

Basic concepts of Differentiation – Elementary differentiation methods – Parametric functions – Implicit function – Maxima and Minima (simple problems).

3. INTEGRATION (12)

Basic concepts of Integration – Methods of Integration – Integration by substitution – Integration by parts – Definite Integrals – Properties of Definite Integrals – Problems on finding Area using single integrals (simple problems).

4.INTERPOLATION (12)

Interpolation: Newton's forward, Newton's backward formulae – Newton's divided differences – Lagrange's polynomial (simple problems).

5. NUMERICAL DIFFERENTIATION AND INTEGRATION

(12)

Numerical differentiation with interpolation polynomials (Newton's forward and backward only) – Numerical integration by Trapezoidal and Simpson's (both $1/3^{rd}$ & $3/8^{th}$) rules (simple problems).

Total no. of periods: 60

Text Books

- 1. Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).
- 2. H.K.Das, Engineering Mathematics, S.Chand Publishers
- 3. Veerarajan T., *Numerical Methods*, Tata McGraw Hill Publishing Co., (2007).

References

- 1. Shanti Narayanan, Differential Calculus, S.Chand& Co., New Delhi, (2005).
- 2. Shanti Narayanan, *Integral Calculus*, S.Chand& Co., New Delhi, (2005).
- 3. John Bird, *Basic Engineering Mathematics* (5th ed.), Elsevier Ltd, (2010).

DEPARTMENT OF PHYSICS

Subject 0 BPH170		S	ubject	ct Name : ENGINEERING PHYSICS						С	L	T/SL	r	P/R		
		P	rerequ	isite : None	2						3	2	(0/1	0/	/0
				Supervised Supedded The		_		ject F	R : R	esearch	C: 0	Credit	S			
2. Demo 3. Appl 4. To id 5. Prod	ine the reconstrate of y fundamilentify & uce and p	compenental solve soresen	tency i laws of applied t activi	en Science, n understar f Physics in l Physics pr ties associa	nding bas Engineer oblems.	ic c ing	concep g & Te	ts. chnole	ogy.	effective	e tech	nical (commui	nication		
Students	completing	g this (course v	were able to												
CO1	Demons	strate	compet	tency in uno	lerstandi	ng	basic (concep	ts.							
CO2				thods for fo pt to conter				ns & d	emo	nstrate	comp	etenc	y with o	experim	ental mo	ethods
CO3	Identify	and p	rovide	solutions f	or engine	eri	ng pro	blems	•							
CO4	Relate t	he tec	hnical	concepts to	day to da	ay li	ife and	l to pr	actio	al situa	tions	,				
CO5	Think a	nalyti	cally to	interpret o	concepts.											
Mapping	of Cours	se Ou	tcomes	with Prog	ram Outo	com	nes (Po	Os)								
COs/P Os	PO1	PO2	PO3	PO4	PO5	P	O6	PO	7	PO8	PC	9	PO10	PO11	PO1	2
CO1	Н	Н			M	N	1			L			M			
CO2	Н	Н	M		M	N	1			L			M		L	
CO3	H	H	H	M		N	1						M		L	
CO4	Н	H	M		M					M					M	
CO5	H	M	L	H												
H/M/L in	ndicates s	treng	th of co	orrelation	H – High	h, N	$\sqrt{M-M}$	ediun	n, L	-Low					-	
Category	Basic Sciences	En Sci	gg ences	Humanities & Social Sciences	Program core	m	Progr Elect		Ope Ele	en ctives	Prac Proje	tical / ect	Interns Techn Skills	_	Soft Skil	ls
· 	V															

Approval

BPH17001 ENGINEERING PHYSICS 3 2 0/1 0/0.

1. PROPERTIES OF MATTER & ACOUSTICS

(9)

Elasticity – Twisting couple on a Wire (derivation) – Shafts – Comparison of Solid and Hollow Shaft – Bending moment – Depression of a Cantilever – Determination of Young's modulus by Depression of a Cantilever – Uniform and non uniform bending (Experiment) – I form of Girders.

Viscosity – Definitions – Lubrication – Properties & Types of Lubricant. Acoustics of Buildings – Reverberation – Reverberation time – Sabine's formula for Reverberation Time – Absorption Coefficient and its Determination – Factors affecting Acoustics of Buildings and its Remedial Measures.

2. THERMAL PHYSICS (9)

Thermal conduction – Thermal Expansion – Expansion joints – Bimetallic strips – Thermal conductivity (k) – Lee's Disc method (theory and experiment) – Radial flow of heat –Thermal conductivity of Glass – Thermal conductivity of Rubber Tube – Flow of heat through Compound Media – Thermal Insulation of buildings – Thermal radiation – Concept of Black body radiation – Fundamentals of Low Temperature Physics.

3. ULTRASONICS AND ITS APPLICATIONS

(9)

Properties & Production of Ultrosonics – Piezoelectric method – Magnetostriction method – Acoustic Grating – Industrial Applications – Ultrasonic flaw detection (Block Diagram) – Medical Application: Velocity Blood Flow Meter – PhonoCardiography – Ultrasound imaging – Hazards and safety of Ultrasound – NDT of Materials using Ultrasonics.

4. LASER & ITS APPLICATIONS

(9)

.Nature of Light – Laser Principle & Characteristics–Ruby laser – Nd- YAG Laser – He-Ne Laser – Co₂ Laser – Semiconductor laser – Homo junction & Hetero Junction Laser – Engineering applications – Holography, Surveying – Industrial applications – Cutting, Welding – Medical applications – Surgery

5. FIBER OPTIC COMMUNICATION

(9)

Total Internal Reflection – Propagation of Light in Optical Fibres – Numerical aperture and Acceptance Angle – Types of Optical Fibres (material, refractive index, mode) – Fibre Optical Communication system (Block diagram) – Attenuation–Transmitter, Receiver, Dispersion, Modulation/Demodulation Advantages of Fibre Optical Communication System – IMT, PMT, Wavelength Modulated & Polarization Modulated Sensors – Endoscope Applications.

Total No. of Periods: 45

Text Books

- 1. M. Arumugam, "Engineering Physics", Anuradha Publication (2004)
- 2. Dr. Senthil Kumar "Engineering Physics I" VRB Publishers (2016)
- 3. N.S.Shubhashree&R.Murugesan., "Engineering Physics", Sreelakhsmi Publishers(2008)

References

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus

- 4. K. Gaur & S.L. Gupta, "Engineering. Physics", Dhanpat Raj & Sons, VI Edition, (1988)
- Palanisamy, P.K., "Engineering Physics", Scitech Publications (P) Ltd., (2006)

DEPARTMENT OF CHEMISTRY

Subject (Code:	Subje	ct Nam	e : ENG	GINEERI	NG CHE	MISTRY	′ – I	С	I		7/SLr		P/R
BCH170	001	Prerec	quisite	None					3	1	2	0/1		0/0
	are T : Tut						ect R:R	esearc	h C	Cred	its			
	د: Theory	/ Lab / E	mbedd	ed The	ory and La	ab								
OBJECT														
	iding an ir													
	reate awar	eness abo	out the v	water q	uality par	ameters,	water an	alysis a	and s	ofteniı	ng of wate	r fron	n ind	ustrial
	pective. arting fun	damantal	s of om	fetoro	a and fue	l calle								
	ating awar						ods.							
	oducing m							c conce	epts o	f poly	mer chem	istry a	and p	lastics.
	Ü				•	C			-			•	•	
COURS	E OUTCO	MES (Co	os) : (3	– 5)										
	23230		-, . (5	- /										
CO1	Gain a	clear und	erstand	ling of	the basics	s of chen	nical the	rmody	nami	ics wh	ich inclu	le cor	ıcept	s such a
	Enthalpy	, Entropy	and F	ree ene	rgy.									
CO2					quality p	arametei	rs, Boiler	· requi	reme	nts, p	roblems, \	Vater	softe	ening and
<u></u>		Water ti			• 1 4	• 1	1 4		•			4 1	41	
CO3		ig the bass of stora			e in electi	rical con	ductance	and	emī	and a	iso undei	stand	tne	chemica
CO4					corrosion a	and unde	rstand th	ne mec	hanis	ms of	corrosion	and t	he m	ethods of
CO4		n control.		usout (orr obton (ana unac	i stanta ti	10 11100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	corr obion			conous o
CO5	Articulat	te the scie	nce of p	olymer	s and con	posites.								
Mapping	g of Cours	e Outcom	nes with	n Progr	am Outco	mes (PO	s)							
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO9	PO10	PO	11	PO12
Os														
CO1	L	M												M
CO2	M	L	M	L		L	H				L			M
CO3	L	M	L				L							L
CO4	M		L	L										L
CO5	M		L		M									M
	م معمدنات م	rength of			H – High,						.			
				nanities	Program	Program				tical /	Internshi		Soft S	Skills
H/M/L i	Basic	Engg			_	171.					T1 '	1		
			& Sc	ocial	core	Elective	s Elec	tives	Proj	ect	Technica Skills	1		
	Basic	Engg		ocial	_	Elective	s Elec	tives	Proj	ect	Technica Skills	l		

BCH17001

ENGINEERING CHEMISTRY – I

3 2 0/1 0/0

1. CHEMICAL THERMODYNAMICS

(8)

Introduction, Terminology in thermodynamics –System, Surrounding, State and Path functions ,Extensive and intensive properties. Laws of thermodynamics – I and II laws-Need for the II law.Enthalpy, Entropy, Gibbs free energy, Helmholtz free energy - Spontaneity and its criteria.Maxwell relations, Gibbs -Helmholtz equation (relating E & A) and (relating H & G), Van't Hoff equations.

2.TECHNOLOGYOF WATER

(9)

Water quality parameters – Definition and expression. Analysis of water – alkalinity, hardness and its determination (EDTA method only). Boiler feed water and Boiler troubles-Scales and sludges, Caustic embrittlement, Priming and Foaming and Boiler corrosion. Water softening processes – Internal and external conditioning – Lime soda, Zeolite, Demineralisation methods. Desalination processes-RO and Electrodialysis . Domestic water treatment.

3. ELECTROCHEMISTRY AND ENERGY STORAGE DEVICES

(10)

 $\label{lem:conductance-potential} Conductance - Types of conductance and its Measurement. Electrochemical cells - Electrodes and electrode potential, Nernst equation - EMF measurement and its applications. Types of electrodes- Reference electrodes- Standard hydrogen electrode- Saturated calomel electrode-Quinhydrone electrode - Determination of <math>P^H$ using these electrodes.

Reversible and irreversible cells– Fuel cells– H_2 – O_2 fuel cell, Batteries-Lead storage battery, Nickel– Cadmium and Lithium-Battery.

4. CORROSION AND PROTECTIVE COATING

(9)

Introduction—Causes of Corrosion—Consequences—Factors affecting corrosion. Theories of corrosion-Chemical corrosion and Electrochemical corrosion. Methods of corrosion control—corrosion inhibitors, Sacrificial anode and Impressed current cathodic protection.

Protective coatings- Metallic coatings- Chemical conversion coatings-paints-Constituents and functions.

5.POLYMERS AND COMPOSITES

(9)

Monomers – Functionality – Degree of polymerization-Tacticity.Polymers – Classification, Conducting Polymers,Biodegradable polymers- Properties and applications.Plastics – Thermoplastics and thermosetting plastics,Compounding of plastics – Compression moulding, injection moulding and extrusion processes. Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural

Polymer composites-introduction-Types of composites-particle reinforced-fiber reinforced-structural composites-examples. Matrix materials, reinforcement materials-Kevlar, Polyamides, fibers, glass, carbon fibers, ceramics and metals.

Total number of periods: 45

Textbooks

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. Dr.R.Sivakumar and Dr.N.Sivakumar Engineering Chemistry Tata McGraw Hill Publishing Company Ltd, Reprint 2013.

References

- 1. S.Nanjundan&C.SreekuttanUnnithan, "Applied Chemistry", Sreelakshmi Publications, (2007)
- 2. J. C. Kuriacose J. Rajaram, "Chemistry in Engineering & Technology", Tata McGraw Hill (1996).
- 3. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Subject BES170	Subject Name : BASIC ELECTRICAL & ELECTRONICS ENGINEERING	С	L	T/SLr	P/R
	Prerequisite : None	3	2	0/1	0/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Understand the concepts of circuit elements, circuit laws and coupled circuits.
- Acquire knowledge on conventional &non conventional energy production.
- 3. Gain information on measurement of electrical parameters.
- Identify basic theoretical principles behind the working of modern electronic gadgets.
- Demonstrate digital electronic circuits and assemble simple devices.

COURSE OUTCOMES (Cos): (3-5)

Students co	ompleting	the course	were ab	e to								
CO1	Studen	ts underst	and Fu	ındament	al laws an	d theoren	ns and	l their pr	actical appl	ications		
CO2	Predict	the beha	vior of	different	electric ar	nd magnet	ic Cir	cuits.				
CO3	Identify	y convent	ional a	nd Non-c	onvention	al Electric	cal po	wer Gen	eration, Tra	nsmission	and Dist	ribution.
CO4	Identify	y & Apply	schen	atic sym	ools and u	nderstand	l the v	working p	principles of	electronic	devices	
CO5	Analyz	e basics of	f digita	l electron	ics and so	lving prob	olems	and des	ign combina	tional circu	uits	
Mapping	of Cour	se Outco	mes w	ith Progra	am Outco	mes (POs)					
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Os												
CO1	Н	Н	Н	Н							M	L
CO2	Н	Н	Н	M	M		M				M	
CO3	Н	M	Н	M	Н		M		M			L
CO4	Н	M		M			M				M	L
CO5	Н	M	Н	M	Н				M		M	L
H/M/L is	ndicates	strength o	of corr	elation I	H – High,	M - Med	lium,	L – Lov	v	•	•	
Category	Basic	Engg		umanities	Program	Program		pen	Practical /	Internship	s / Soft	Skills
	Science	s Scienc		Social eiences	core	Electives	s E	Electives	Project	Technical Skills		
	1	1				+	-			1		

	 •	
Approval		

BES17001

BASIC ELECTRICAL & ELECTRONICS ENGINEERING 3 2 0/1 0/0

1. ELECTRIC CIRCUITS (9)

Electrical Quantities – Ohms Law – Kirchhoff's Law – Series and Parallel Connections – Current Division and Voltage Division Rule - Source Transformation – Wye (Y) – Delta (Δ) , Delta (Δ) – Wye (Y) Transformation – Rectangular to Polar and Polar to Rectangular.

2. MACHINES & MEASURING INSTRUMENTS

(9)

Construction & Principle of Operation of DC motor & DC Generator – EMF equation of Generator – Torque Equation of Motor – Construction & Principle of operation of a Transformer – PMMC – Moving Iron types of meter – Single Phase Induction Type Energy Meter.

3. BASICS OF POWER SYSTEM

(9)

 $\label{eq:control_control_control_control} Generation \ of \ Electric \ Power - Types \ of \ Transmission \ \& \ Distribution \ Schemes - Representation \ of \ Substation.$

4. ELECTRON DEVICES (9)

Passive Circuit Components-Classification of Semiconductor-PN Junction Diode-Zener diode- Construction and Working Principle – Applications--BJT-Types of configuration-JFET.

5. DIGITAL SYSTEM (9)

Number System – Binary, Decimal, Octal, Hexadecimal – Binary Addition Subtraction, Multiplication & Division– Boolean Algebra – Reduction of Boolean Expressions – Logic Gates - De-Morgan's Theorem, Adder – Subractor.

Total no of Periods: 45

Text Books

- 1. D P Kothari, I J Nagrath, Basic Electrical Engineering, Second Edition, , Tata McGraw-Hill Publisher
- 2. A Course In Electrical And Electronic Measurements And Instrumentation, A.K. Sawhney, publisher DHANPAT RAI&CO
- 3. Text Book of Electrical Technology: Volume 3: Transmission, Distribution and Utilization, B.L.Theraja, A.K.Theraja, publisher S.CHAND
- 4. Morris Mano, M. (2002) Digital Logic and Computer Design. Prentice Hall of India
- 5. Millman and Halkias1991, Electronic Devices and Circuits, Tata McGraw Hill,

References

1. R.Muthusubramanian, S.Salivahanan, K A Muraleedharan, Basic Electrical, Electronics And Computer Engineering, Second Edition, ,Tata McGraw-Hill publisher.

DEPARMENT OF MECHANICAL ENGINEERING

Subject Code : BES17002	Subject Name : BASIC MECHANICAL & CIVIL ENGINEERING	С	L	T/SLr	P/R
	Prerequisite : None	3	2	0/1	0/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Learn Basics of Internal Combustion Engines, power plants and boilers
- 2. Demonstrate How metals are formed, joined, using machining operations Lathe, Milling and Drillingmachines
- 3. To identify & solve problems in Engineering Mechanics
- 4. Learn basics of Building materials and construction
- 5. Know the basic process of concrete, types of masonry Construction of Roads , Railways, Bridges and Dams

COURSE OUTCOMES (Cos): (3-5)

Students completing the course were able to

CO1														
CO2	Utilize	the conce	pt of met	als form	ing, joini	ing proce	ss and ap	ply in sui	itable mad	chining pr	ocess			
CO3	Identify	y and pro	vide solu	tions for	problem	s in engi	neering n	nechanics	;					
CO4	Utilize the concept of Building materials and construction able to perform concrete mix and masonry types													
CO5	CO5 Demonstrate how Roads ,Railways, dams , Bridges have been constructed													
Mapping	Mapping of Course Outcomes with Program Outcomes (POs)													
COs/P	PO1													
Os														
CO1	M					M		Н	Н	Н		Н		
CO2	Н				L	M		M	M	M		M		
CO3	Н	Н			L	L		M	M	M		M		
CO4	Н	H												
CO5	H L L M M M M													
H/M/L i	ndicates	strength o	of correla	ation H	– High.	M - Me	dium. L	-Low						

Category	Basic	Engg	Humanities	Program	Program	Open	Practical /	Internships /	Soft Skills
	Sciences	Sciences	& Social Sciences	core	Electives	Electives	Project	Technical Skills	
		$\sqrt{}$							
Approval									

BES17002

BASIC MECHANICAL & CIVIL ENGINEERING

3 2 0/1 0/0

UNIT- I: THERMAL ENGINEERING

(9)

Classification of internal combustion engine – two stroke, four stroke petrol and diesel engines. Classification of Boilers – Cochran boiler – Locomotive boilers – Power plant classification – Working of Thermal and Nuclear power plant.

UNIT- II: MANUFACTURING PROCESS

(13)

Metal forming processes – Rolling, forging, drawing, extrusion and sheet metal operations- fundamentals only. Metal Joining processes – Welding - arc and gas welding, Soldering and Brazing. Casting process – Patterns - Moulding tools - Types of moulding - Preparation of green sand mould - Operation of Cupola furnace.

Basics of metal cutting operations – Working of lathe- parts-Operations performed. Drilling machine – Classification – Radial drilling machine - Twist drill nomenclature.

UNIT- III: MECHANICS (9)

Stresses and Strains – Definition – Relationship – Elastic modulus – Centre of gravity – Moment of Inertia – Problems. (Simple Problems Only).

UNIT- IV: BUILDING MATERIALS AND CONSTRUCTION

(7)

<u>Materials:</u>Brick - Types of Bricks - Test on bricks - Cement - Types, Properties and uses of cement - Steel - Properties and its uses - Ply wood and Plastics.

<u>Construction</u>: Mortar – Ingredients – Uses – Plastering - Types of mortar - Preparation – Uses – Concrete – Types – Grades – Uses – Curing – Introduction to Building Components (foundation to roof) – Masonry – Types of masonry (Bricks & Stones)

UNIT- V: ROADS, RAILWAYS, BRIDGES & DAMS

(7)

 $Roads-Classification\ of\ roads-Components\ in\ roads-Railways\ -Components\ of\ permanent\ way\ and\ their\ function-Bridges-Components\ of\ bridges-Dams-Purpose\ of\ dams-Types\ of\ dams.$

Total No. of Periods: 45

Text books

- 1. S. Bhaskar, S. Sellappan, H.N. Sreekanth, (2002), "Basic Engineering" Hi-Tech Publications
- 2. K. Venugopal, V. Prabhu Raja, (2013-14), "Basic Mechanical Engineering", Anuradha Publications.
- 3. K.V. Natarajan (2000), Basic Civil Engineering, Dhanalakshmi Publishers
- 4. S.C. Sharma(2002), Basic Civil Engineering, Dhanpat Raj Publications

References

- 1. PR.SL. Somasundaram, (2002), "Basic Mechanical Engineering" -, Vikas Publications.
- 2. S.C. Rangawala(2002), Building Material and Construction, S. Chand Publisher
- B.Tech Regulations 2017 Approved by the Academic Council------ Revision 3

DEPARTMENT OF MECHANICAL ENGINEERING

Subject Code : BES17ET1	Subject Name: BASIC ENGINEERING GRAPHICS	С	L	T/SLr	P/R
	Prerequisite : None	2	1	0/0	2/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Learn to know what kind of pencils to be used to sketch lines, numbers, Letters and Dimensioning In drawing sheet.
- 2. Draw Projection of points, line, planes and solids using Drafters
- 3. To identify the angle of projection and development of surfaces, isometric projection and Orthographic projection
- 4. Know the basics of elevation and plan of building.
- 5. Learn the basics of Drafting using AutoCAD Software

COURSE OUTCOMES (Cos): (3-5)

Students completing the course were able to

	CO1 Utilize the concept of Engineering Graphics Techniques to draft letters, Numbers, Dimensioning in Indian Standards													
CO1	Utilize t	he concept	of Engine	eering Gr	aphics Te	echniques t	o draft let	tters, Num	bers , Dimo	ensioning i	n Indian St	andards		
CO2	Demons applicat		rafting pr	actice vis	ualization	and proje	ection skil	ls useful fo	r conveyin	g ideas in	engineerin	9		
CO3	Identify	basic sket	ching tech	niques of	engineer	ing equipn	nents							
CO4	Demons	trate the p	rojections	of Points	s, Lines,	Planes and	Solids.							
CO5	Draw t	he sectiona	al view of	simple b	uildings a	nd utilize	Auto CAD) Software.	•					
Mapping of Course Outcomes with Program Outcomes (POs)														
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	1													
CO1	Н	Н	Н	M	M	M			Н	Н		Н		
CO2	Н	Н	Н	M	M	M			Н	Н		Н		
CO3	O3													
CO4	Н	Н	M	M		Н		M	Н	Н		Н		
CO5	Н	Н	Н	M	Н	L		M	Н	Н		Н		

B.Tech Regulations 2017 Approved by the Academic Council-----

H/M/L in	ndicates str	ength of c	orrelation I	H - High, I	M – Mediui	m, L – Lov	V					
Category	Basic Sciences	Engg Sciences	Humanities & Social Sciences	Program core	Program Electives	Open Electives	Practical / Project	Internships / Technical Skills	Soft Skills			
Approval												

BES17ET1

BASIC ENGINEERING GRAPHICS

2 1 0/0 2/0

CONCEPTS AND CONVENTIONS (Not for examination)

(3)

Introduction to drawing, importance and areas of applications – BIS standards – IS: 10711 – 2001: Technical products Documentation – Size and layout of drawing sheets – IS 9606 – 2001: Technical products Documentation – Lettering – IS 10714 & SP 46 – 2003: Dimensioning of Technical Drawings – IS: 15021 – 2001: Technical drawings – Projections Methods – drawing Instruments, Lettering Practice – Line types and dimensioning – Border lines, lines title blocks Construction of polygons – conic sections – Ellipse, Parabola, Hyperbola and cyloids.

UNIT- I: PROJECTION OF POINTS, LINES AND PLANE SURFACES

(6)

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – projection of polygonal surface and circular lamina in simple position only.

UNIT-II: PROJECTION OF SOLIDS

(6)

Projection of simple solids like prism, pyramid, cylinder and cone in simple position

Sectioning of above solids in simple vertical position by cutting plane inclined to one reference plane and perpendicular to the other.

UNIT- III: DEVELOPMMENT OF SURFACES AND ISOMETRIC PROJECTION

(6)

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders, and cones.

Principles of isometric projection – isometric scale – isometric projections of simple solids, like prisms pyramids, cylinders and cones.

UNIT-IV: ORTHOGRAPHICS PROJECTIONS

(6)

Orthographic projection of simple machine parts – missing views

BUILDING DRAWING

Building components – front, Top and sectional view of a security shed.

UNIT- V: COMPUTER AIDED DRAFTING

(3)

Introduction to CAD – Advantages of CAD – Practice of basic commands – Creation of simple components drawing using CAD software.

Total No. of periods:30

Note: First angle projection to be followed.

Text Books

- 1. Bhatt, N.D. and Panchal, V.M. (2014) Engineering Drawing Charotar Publishing House
- 2. Gopalakrishnan, K.R. (2014) Engineering Drawing (Vol.I& II Combined) Subhas Stores, Bangalore.

B.Tech Regulations 2017 Approved by the Academic Council------ Revision 3

Form No. F/CM / 004 Rev.1 / 01.01.2014

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus

References

- 1. Natarajan, K.V (2014) A Text Book of Engineering Graphics, DhanalakshmiPublisheres, Chennai
- Venugopal, K and Prabhu Raja, V. (2010) Engineering Graphics, New Age International (P) Limited

Special Points applicable to University examinations on Engineering Graphics

- 1. There will be five questions, each of either or type covering all UNIT-s of the syllabus
- All questions will carry equal marks of 20 each making a total of 100
- 3. The answer paper shall consists of drawing sheets of A2 size only. The students will be permitted to use appropriate scale to fit solution within A2 size.

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus DEPARTMENT OF PHYSICS

Subject (BPH17L		Subject	Name:	ENG	INEERIN	G PHYSIC	S LAB		С	L	T/SLr		P/R
		Prerequ	isite : No	one					1	0	0/0		2/0
		orial SLr : Lab / Eml				P: Project	R : Rese	arch (C: Cred	its		l	
2. Di	emonstrate splay the a		asure pro	pertio		ments & und					measur	ements	3.
		e course were		')									
CO1	Recognize	e the corre	ctness an	d pr	ecision in t	he results o	f measu	rement	s.				
CO2	Construct	t and comp	are the p	rope	erties of va	riety of elec	ctrical, n	echan	ical, ele	ctronic a	ınd opti	cal sys	tems.
CO3	Practice t	he handlin	g of Elec	trica	l, Electron	ic, Optical	& Mech	anical	Equipm	ents			
CO4	Identify	and comp	are the	theo	retical an	d practica	l usage	of var	ous ins	strumer	nts		
CO5													
Mapping	of Course	Outcomes	with Pr	ogra	m Outcon	nes (POs)							
COs/PO	PO1	PO2	PO3	PC	04 PO5	PO6	PO7	PO8	PO9	PO	10 1	PO11	PO12
CO1	Н	Н	M	Н	M								
CO2	Н	M	M	Н						M			
CO3	Н	M	M	Н	M				M	M			M
CO4	Н	Н	M	M	Н				M				L
H/M/L in	dicates str	ength of c	orrelatio	n H	$\overline{I - High, N}$	M – Mediu	m, L-1	Low	1				<u> </u>
Category	Basic Sciences	Engg Sciences	Humani & Socia Sciences	1	Program core	Program Electives	Open Elective		ractical / roject	Interr Techi Skills		Soft S	Skills
								1					

Approval

BPH17L01 ENGINEERING PHYSICS LAB 1 0 0/0

LIST OF EXPERIMENTS (Any Seven)

- 1. Torsional Pendulum Without Masses-Determination of Rigidity Modulus and Moment of Inertia
- Torsional Pendulum With Masses-Determination of Rigidity Modulus and Moment of Inertia
- 3. Non Uniform Bending Determination of Young's Modulus
- Uniform Bending Determination of Young's Modulus
- 5. Poiseuille's Method Determination of Coefficient of Viscosity of a given liquid
- 6. Lee's Disc Determination of Thermal Conductivity of Bad Conductor
- 7. Spectrometer Determination of Refractive Index of a Prism
- 8. Laser Grating Determination of Wavelength of a given Source
- 9. Spectrometer Determination of Wavelength of Mercury Spectrum using Grating
- 10. Transistor Characteristics.

DEPARTMENT OF CHEMISTRY

Subject (BCH17I		Subjec	t Name	:ENGI	NEERIN(G CHEMI	STRY	Y LAB	C		L	T/S	Lr	P/R		
		Prerequ	isite : N	None					1	-	0	0/0)	2/0		
OBJECT 1. To f 2. To f 3. To c 4. To c	TVES: Camiliarize nelp learned reate awa determine	Lab / E	e conductor of all parantees (3)	e determetivity arision.	Learning bry and La ination of the EMF us	ub water qual	ity pa	rameters		Credit	īs s					
CO1	Awaren	ess of wat	er quali	ty para	meters and	d its deter	mina	tion.								
CO2					titration											
CO3	Ability 1	to measur	e EMF a	and per	form pote	ntiometric	c titra	tions.								
CO4	Measur	lity to measure EMF and perform potentiometric titrations. assuring the Molecular weight of macromolecules														
CO5	Gaining	awarene	ss about	corrosi	on.											
Mapping	of Cours	se Outcor	nes with	n Progra	ım Outco	mes (POs)									
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	7 POS	3	PO9	PO10) F	PO11	PO12		
CO1	M	Н	Н	M	Н									L		
CO2	M	Н		L						L						
CO3	L	M		L						L						
CO4	M	M		L						L						
CO5	L	M	L	L	Н									M		
H/M/L in	ndicates s	trength o	f correla	ation I	H – High,	M-Med	lium,	L – Lov	N					1		
Category	Basic Sciences	Engg Science	s & S	nanities ocial nces	Program core	Program Electives		Open Electives		ctical / ject	Internsh Technic Skills		Soft	Skills		
									1							
Approva	1		ı		ı	1			•		1					

BCH17L01 ENGINEERING CHEMISTRY LAB

1 0 0/0 2/0

LIST OF EXPERIMENTS (Any Seven)

- (1) Estimation of temporary, permanent and total hardness of water.
- (2) Determination of type and extent of alkalinity in water.
- Estimation of dissolved oxygen in a water sample. (3)
- Conductometric titration of strong acid vs. strong base (4)
- (5) Conductometric precipitation titration using barium chloride and sodium sulphate.
- Determination of Equivalent conductance of strong electrolyte at infinite dilution. (6)
- Determination of single electrode potential. (7)
- Estimation of Fe²⁺ion by potentiometry. (8)
- Determination of Molecular Weightand Degree of Polymerisation of Polymer by viscometry. (9)
- (10)Determination of rate of corrosion by weight loss method.

DEPARTMENT OF ENGINEERING SCIENCES

Subject C BES17L0		Subject	Name :1	BASIC I	ENGINE	ERING W	OR	KSH	ЮР	C	,	L	T/SI	Lr	P/R	
		Prerequ	isite : N	one						1		0	0/0)	2/0	
L : Lectur							ct F	R : R	esearc	h C	: Credi	ts		<u> </u>		
T/L/ETL	: Theor	y / Lab / l	Embedd	ed Theo	ry and L	ab										
OBJECT	IVES :															
						ntry tools,										
						ent of elec				i.						
						nd solderii	ng pi	roces	S							
		simple fat				vorking mo	പപ									
<i>J</i> . 1	LACCUIE	a project ii	пасрение	anny and	тпакс а W	vorking int	JUEI									
COURSE	OUTC	OMES (Cos) : (3	– 5)												
Students co	mpleting	the course	were able	to												
CO1			e fitting tools and carpentry tools, & Perform the process of Filing, Chipping, Cutting. process of fabrication of tray, cones and funnels, Tee Halving Cross, Lap Joint Martise&													
CO2		n the proc	e process of fabrication of tray, cones and funnels, Tee Halving Cross, Lap Joint Martise&													
GO2	Joints	.44	• 4		•	-41	•	4								
CO3						other equ										
CO4						e electron		nstru	ments							
Mapping							_	.7	DOO		DOO	DO10		011	DO12	
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PC) /	PO8		PO9	PO10) F	O11	PO12	
S	3.4	TT	TT	N /	3.4						N/				T	
CO1	M	H	H	M	M				L		M				L	
CO2 CO3	M		H	L L	M				L L		L L					
CO4	M L	Н	M	L					$\frac{L}{L}$		$\frac{L}{L}$				M	
CO5	L	Н	M	L					L		L				M	
	1	1	C 1	· · · ·	T TT' 1	27. 27	1.		<u> </u>							
H/M/L in	Basic			ation F nanities				_			ctical /	T., 4 1	: /	C - C	Skills	
Category	Sciences	Engg Science		ocial	Program core	Program Electives		Oper Elect		Proj		Internsh Technic Skills		Soft	SKIIIS	
						1										
Approval												1		1		
PP-0 / 41																

BES17L01 BASIC ENGINEERING WORKSHOP

1 0 0/0 2/0.

MECHANICAL WORKSHOP

FITTING SHOP PRACTICE:

Study of fitting tools and Equipments – Practicing, filing, chipping and cutting – making V-joints, half round joint, square cutting and dovetail joints.

SHEET METAL PRACTICE:

Study of tools and equipments – Fabrication of tray, cones and funnels.

CARPENTRY:

Introduction – Types of wood – Tools – Carpentry processes – Joints – Planning practice – Tee Halving Joint – Cross Lap Joint – Maritse and Tenon Joint – Dovetail Joint

CIVIL ENGINEERING PRACTICE

- 1. Study of Surveying and its equipments
- 2. Preparation of plumbing line sketches for water supply and sewage lines
- 3. Basic pipe connection using valves, laps, couplings, unions, reduces and elbows in house hold fittings

ELECTRONICS ENGINEERING PRACTICE

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR
- 2. Soldering practice Components Devices and Circuits Using general purpose PCB
- 3. Study of Logic Gates.
- 4. Generation of clock signal.

ELECTRICAL ENGINEERING PRACTICE

- 1. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 2. Measurement of energy using single phase energy meter.
- 3. Measurement of resistance to earth of an electrical equipment.
- 4. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 5. Fluorescent lamp wiring.
- 6. Stair case wiring

DEPARTMENT OF COMPUTER SCIENCE

Subject C BES17E		Subjec	t Name	: C PR	OGRAN	IMING A	ANI	D LA	B	С		L	T/SI	ır	P/R
		Prerequ	uisite :	None						2		1	0/0)	2/0
L : Lectu T/L/ETL					Learning ory and L		ect l	R : R	esearc	h C	: Credi	ts			
2. Apply	ne the basi fundamen	ntals in C	progra	mming.	with the co	ourse.									
	E OUTCO														
CO1	Acquire	knowled	ge how	to write	and execu	ıte c prog	ran	ıs							
CO2	Understa	nd the f	undame	ental exp	ression ar	nd statem	ents	of C	Langu	uage	•				
CO3	Work wi	th array	s, funct	ions, poi	nters, stru	ictures, S	trin	gs an	d Files	s in (Z.				
CO4	Identify	and prov	vide solu	itions fo	r engineer	ring prob	lems	s in C	progr	ramn	ning				
Mapping	of Cours	e Outco	mes wit	h Progr	am Outco	mes (PO	s)								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	07	PO8		PO9	PO10	P	O11	PO12
CO1	Н	L			M	M			Н		M				Н
CO2	M	M			Н	L			M		Н				M
CO3	M			Н		M			M		Н				M
CO4	M			M		M			Н		M				M
H/M/L in	dicates st	rength o	of corre	lation 1	H – High,	M – Me	diur	n, L	– Lov	v			ı		1
Category	Basic Sciences	Engg Science	es & S	manities ocial ences	Program core	Program Elective		Open Elect		Prac Proj	ctical / ject	Internsh Technica Skills		Soft	Skills
										V					

Approval

BES17ET2

C PROGRAMMING AND LAB

2 1 0/0 2/0

1. INTRODUCTION

Fundamentals, C Character set, Identifiers and Keywords, Data Types, Variables and Constants, Structure of a C Program, Executing a C Program.

2.EXPRESSION AND STATEMENT

(6)

Operators, Types-Complex and Imaginary, Looping Statement-For, While, Do, Break, continue, Decision Statement-If, If else, Nested if, Switching Statement, Conditional Operator.

3.ARRAYS AND FUNCTIONS

(6)

Defining an Array, Using Array elements as counters, Generate Fibonacci number, Generate Prime Numbers, Initializing Arrays, Multidimensional Arrays, Defining a Function, Function call -types of Function calls -Function pass by value -Function pass by reference, Write a Program in Recursive Function.

4. STRUCTURES AND POINTERS

(6)

Working with Structures -Introduction -Syntax of structures -Declaration and initialization -Declaration of structure variable - Accessing structure variables, Understanding Pointers -Introduction -Syntax of Pointer.

5. STRINGS AND FILE HANDLING

(6)

Strings -Syntax for declaring a string -Syntax for initializing a string -To read a string from keyboard, Files in C -File handling functions -Opening a File closing a file --example: fopen, fclose -Reading data from a File- Problem solving in C

Total No of Periods: 30

- 1. www.spoken-tutorials.org
- 2. http://www.learn-c.org/

Reference:

- 1. Stephen G. Kochen" Programming in C- A complete introduction to the C Programming Language. Third Edition, Sams Publishing -2004
- 2. Ajay Mital, "Programming in C: A Practical Approach", Pearson Publication-2010

List of Programs

- 1. Write a program to check 'a' is greater than 'b' or less than 'b' Hint: use if statement.
- 2. Write another program to check which value is greater 'a', 'b' or 'c'. Hint: use else-if statement. (Take values of a, b, c as user inputs)
- 3. Write a Program to find the sum of the series : $x + X^3/3! + X^5/5! + \dots X^n/n!$
- 4. Write a C Program to solve a Quadratic Equation by taking input from Keyboard
- 5. Write a C Program to arrange 20 numbers in ascending and descending Order. Input the Numbers from Keyboard
- 6. Write a C Program to Multiply a 3 x 3 Matrix with input of members from Keyboard
- 7. Write a program that takes marks of three students as input. Compare the marks to see which student has scored the highest. Check also if two or more students have scored equal marks.
- 8. Write a program to display records of an employee. Like name, address, designation, salary.
- 9. Write a C program, declare a variable and a pointer. Store the address of the variable in the pointer. Print the value of the pointer.
- 10. Write a C program to concatenate String 'best' and String 'bus'. Hint: strcat(char str1, char str2);
- 11. Explore the other functions in string library.

12. Write a program to create a file TEST. Write your name and address in the file TEST. Then display it on the console using C program.

DEPARTMENT OF ENGINEERING SCIENCES

Subject Code : BES17ET3	Subject Name : ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB	С	L	T/SLr	P/R
	Prerequisite : None	1	0	0/0	2/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. Understand how entrepreneurship Education transforms individuals into successful leaders.
- 2. Identify individual potential &Shape career dreams
- 3. Understand difference between ideas & opportunities
- 4. Understand the "flow" & create Entrepreneurial CV.
- 5. Identify components & create action plan.
- Use brainstorming in a group to generate ideas.

COURSE OUTCOMES (Cos): (3-5)

Students completing the course were able to

CO1	Develop	a Busine	ess plan	& impro	ve ability	to recogn	nize l	busir	ness op	po	rtunity				
CO2	Do a sel	f analysis	to build	l a entre	preneuria	l career.					-				
CO3	Articula	ate an eff	ective el	evator pi	tch.										
CO4	Analyzo	the local	l market	environ	ment & d	emonstra	ite th	ie ab	ility to) fir	nd an att	ractive ma	rket	ţ	
C05	Apply a	n ethical	underst	anding &	k perspec	tive to ch	ange	opp	ortuni	ities	to busir	ess situati	ons		
Mapping	of Cour	se Outco	mes wit	h Progra	ım Outco	mes (PO	s)								
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO) 7	PO8		PO9	PO10	PC	D11	PO12
Os															
CO1		M													
CO2	Н	M		H	M	Н	N	A	H		Н	Н]	M	M
CO3		M	M	M		Н			H		Н	Н			
CO4		H	M	M	M	M			H		M	M		H	
CO5		M	M	H	M	M	I	I	H		M	M		H	L
H/M/L in	ndicates	strength o	of correl	ation F	H – High,	M - Med	dium	n, L	- Lov	V					
Category	Basic	Engg	Engg Humanities Program Program Open Practical / Internships / Soft Skills												
	Sciences	Scienc		ocial	core	Elective	s	Elect	tives	Pr	oject	Technical			
			Scie	ences						V		Skills			
										V					

BES17ET3 ENTREPRENEURIAL SKILL DEVELOPMENT & PROJECT LAB 1 0 0/0 2/0

1. CHARACTERISTICS OF A SUCCESSFUL ENTREPRENEUR

(3)

Introduction to entrepreneurship education – Myths about entrepreneurship – How has entrepreneurship changed the country – Dream it. Do it - Idea planes - Some success stories – Global Legends – Identify your own heroes – entrepreneurial styles – Introduction, concept & Different types - Barrier to Communication – Body language speaks louder than words

2. DESIGN THINKING & RISK MANAGEMENT

(3)

Introduction to Design thinking – Myth busters – Design thinking Process - Customer profiling – Wowing your customer – Personal selling – concept & process – show & tell concept – Introduction to the concept of Elevator Pitch - Introduction to risk taking & Resilience – Managing risks (Learning from failures, Myth Buster) – Understanding risks through risk takers – Why do I do? – what do I do?

3.IDEA GENERATION & EVALUATION

(3)

Introduction – Finding your flow – Entrepreneurial CV – your draft action plan - D.I.S.R.U.P.T - A model for ideation – Let's ID8 – Mind mapping for ideas – build your own idea bank – Concept of Decision matrix & paired comparison analysis – 5Q framework.

4. ENTREPRENEURIAL OUTLOOK & CUSTOMER DISCOVERY

(3)

Effectuation – Start with your means – Segmentation & targeting – Niche marketing – Find your Niche – Drawing & mapping the consumption chain - outcome driven innovation – This is my customer

5. VALUE PROPOSITION& CAP STONE PROJECT PRESENTATION

(3)

 $Introduction-Value\ proposition\ design-customer\ segment-validation\ exercise-value\ propositions\ \&\ assessing\ fit-Refine\ your\ value\ proposition-Blue\ ocean\ strategy-What\ is\ prototyping-Design\ your\ experiment-Design\ your\ MVP-Learning\ cards\ \&\ Capstone\ Presentation.$

II SEMESTER

DEPARTMENT OF ENGLISH

Subject Code:	Subject Name: TECHNICAL ENGLISH - II	C	L	T/SLr	P/R
BEN17002	Prerequisite : None	2	1	0/0	2/0

L: Lecture T: Tutorial SLr: Supervised Learning P: Project R: Research C: Credits

T/L/ETL: Theory / Lab / Embedded Theory and Lab

OBJECTIVES:

- 1. strengthen the academic and interpersonal advanced vocabulary
- 2. strengthen their writing skill such as summarizing, describing and report writing
- 3. learn to keep the simple conversations in day to day life
- 4. get to know certain life skills such as marketing, advertising and do presentation
- 5 .improve the reading skill with comprehension

COURSE OUTCOMES (Cos): (3-5)

Students completing the course were able to

CO1	atuanatha	n thoir o		o bulo	mer and		wia ta	lon			h w 0 1 1 0	h waadina	n 0 0 m 0	
CO1	_	n their ac xts, newsp			•				iguage	usage u	nroug	h reading	poems,	
CO2	use appro	priate tecl	nnical vo	cabul	ary in int	erpretii	ng da	ata						
CO3	engage ef	fectively in	role-pla	y, dia	logue, co	nversat	ion a	nd i	ntervie	ws				
CO4	equip the	uip them for effective interaction with people in all situations both academic and professional												
CO5	learn Eng	rn English language as a 'life skill' and prepare for placement interviews												
Mapping	of Course	Course Outcomes with Program Outcomes (POs)												
COs/PO	s PO1	PO2	PO3	PO	4 PO5	PO6	PO	7	PO8	PO9	PO1	PO11	PO12	
											0			
CO1				H							H		H	
CO2				H							H		H	
CO3				Н		M				H	H		H	
CO4				Н						H	H		H	
CO5				Н						Н	Н		H	
H/M/L i	ndicates str	licates strength of correlation H – High, M – Medium, L – Low												
Category	Basic	Engg	Humanit	ies	Program	Prograi	n	Ope	en	Practica	l / In	nternships /	Soft	
	Sciences	Sciences	& Social Sciences		core	Electiv	es	Elec	ctives	Project		echnical kills	Skills	
			V											

Approval	

2 1 0/0 2/0 BEN17002 TECHNICAL ENGLISH II

Unit I Vocabulary, Grammar and Usage – I

Verbal analogy - picking out the odd one from a series -finding one word substitute - paragraph writing: using discourse markers, defining / describing an object / device / instrument / machine using topic sentence and its role, unity, coherence and use of cohesive expressions Essay writing with due emphasis on features such as topical sentence, unity, coherence and cohesive devices

UnitII Vocabulary, Grammar and Usage - II

(6)

Cloze – completion of sentences suitably, phrases and idioms, homophones – collocation -

Techniques of formatting and drafting reports: writing newspaper reports on accidents, thefts and festivals

Unit III Reading (6)

Correcting errors in sentencesEditing a passage (correcting the mistakes in grammar, spelling and punctuation) -interpreting pie and bar charts

Unit IV Writing (6)

Register: formal and informal – using ellipses in dialogues- framing dialogues- Email: Job Application, Resume

Unit V Functional English and Practical Components

(6)

Listening: Media Advertisement

Speaking: oral practice- activities related to professional skills (e.g. Marketing, advertising etc.), role play activities using different speech functions (persuasion, negotiation, giving directions and guidance), conversational etiquette (politeness, strategies, turn-taking, body language).

Reading: reading newspaper/ magazine articles for gathering information

Writing: Note-making from newspaper and magazine articles- follow BEC method

Writing and speaking dialogue writing followed by role play in different situations such as asking permission, requesting and instructing, introducing oneself – activities based on BEC

Total No of Periods:30

Text Book

1. Pushkala. R, PadmasaniKannan.S, Anuradha. V, ChandrasenaRajeswaran.M Quest: A Textbook of ommunication Skills, Vijay Nicole,

References

- 1. Pushkala R. P.A.Sarada, El Dorado: A Textbook of Communication Skills, Orient Blackswan, 2014
- 2. PadmasaniKannan.S., Pushkala.R.: Functional English
- 3. Hancock, Mark, English Pronunciation in Use; Cambridge Univ. Press, 2013
- 4. McCarthy, Michael et.al., English Vocabulary in Use, Advanced, Cambridge Univ. Press, 2011
- 5. Wren and Martin: Grammar and Composition, Chand & Co, 2006

Web Sources

- 1. https://learnenglish.britishcouncil.org
- 2. www.englishpage.com
- 3. www.writingcentre.uottawa.ca/hypergrammar/preposit.html

T/SLr

P/R

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus

- 4. <u>www.better-english.com/grammar/preposition.html</u>
- 5. http://www.e-grammar.org/infinitive-gerund/
- 6. www.idiomsite.com/

Subject Code:

DEPARTMENT OF MATHEMATICS

Subject Name: MATHEMATICS - II

Subject	Loue:	Subject	Name: N	MAIH	EMATI	$CS - \Pi$			C	L	1/3	·LI	P/K	
BMA170	003	Prerequ	erequisite : None 4 3 1/0 0/0 SLr : Supervised Learning P : Project R : Research C: Credits											
L : Lectu	re T : Tuto	orial SLr :	Supervis	sed Le	arning l	P : Proj	ect]	R : Resear	ch C:	Credi	ts		-	
T/L/ETL	: Theory	Lab / Em	bedded T	heory	and La	.b								
OBJECT	IVES:													
	and the Bas	ic concepts	in Integra	ition										
	iy the Basic				rals									
	e Basic con					ions								
4. Apply t	the Basic co	ncepts of	Analytical	l Geon	netry									
5. Analyz	ze the Basic	concepts of	of Vector (Calcul	us									
İ														
COURSI	E OUTCO	MES (Cos	(3-5))										
	ompleting the			,										
	1 0													
CO1	Integrate	e given fu	nction by	usin	g meth	ods of i	integ	gration ar	nd to f	ind th	ie are	ea under	curve	
	and the v	volume of	a solid b	y reva	aluatio	n.								
CO2	Evaluate	the multi	iple integ	rals /	area /v	olume	and	to chang	e the o	rder	of int	egration	1.	
CO3	Solve the	ordinary	differen	tial e	quation	and to	sol	ve Eulers	differ	ential	equa	ation.		
CO4	Find the	equation	of plane	s, line	es and s	sphere	and	to find the	ne sho	rtest	dista	nce betv	veen to	
	skew line	es.	_			_								
CO5	Find the	gradient,	maximu	m dir	ectiona	l deriv	ative	e and wor	k don	e by a	forc	e and to	verify	
		tokes/ Ga								•			•	
Mapping	of Course						Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO	7 PO8	PC	9 P	O10	PO11	PO12	
CO1	L	M			M	M			M	N	1		Н	
CO2	L	M			M	Н			Н	H	[M	
CO3	L	M			M	Н			Н	Н	[M	
CO4	L	M			L	M			M	Н	[M	
CO5	L	M			M	M			M	Н	[M	
	ndicates str		orrelation	1 H-			ediur	n, L-Lo					1	
Category	Basic	Engg	Humaniti		rogram	Program		Open		tical /	Inter	rnships /	Soft	
	Sciences	Sciences	& Social	\mathcal{E}				Electives			Tech	nnical	Skills	
			Sciences							Skill	is			
	1	1	ı			1			1		1		1	

	O	•
Approval		

MATHEMATICS - II 3 1/0 0/0 BMA17003

1. INTEGRATION (12)

Basic concepts of Integration - Methods of Integration - Integration by substitution - Integration by parts - Definite integrals-Properties of definite integrals – Problems on finding Area and Volume using single integrals (simple problems).

2. MULTIPLE INTEGRALS (12)

Double integral in Cartesian and Polar Co-ordinates - Change of order of integration - Triple integral in Cartesian Co-ordinates – Spherical Polar Co-ordinates – Change of variables (simple problems).

3.ORDINARY DIFFERENTIAL EQUATIONS

(12)

First order differential equations - Second and higher order linear differential equations with constant coefficients and with RHS of the form: e^{ax} , x^n , Sin ax, Cos ax, $e^{ax}f(x)$, x f(x) where f(x) is Sin bx or Cos bx – Differential equations with variable coefficients (Euler's form) (simple problems).

4.THREE DIMENSIONAL ANALYTICAL GEOMETRY

(12)

Direction Cosines and Ratios - Equation of a straight line - Angle between two lines - Equation of a plane - Co-planar lines -Shortest distance between skew lines – Sphere – Tangent plane.

5. VECTOR CALCULUS (12)

Scalar and Vector functions - Differentiation - Gradient, Divergence and Curl - Directional derivatives - Irrotational and Solenoidal fields—Line, Surface and Volume integrals — Green's, Stoke's and Gauss divergence theorems (statement only) — Verification.

Total no. of :periods: 60

Textbooks

- 1. Kreyszig E., Advanced Engineering Mathematics (10th ed.), John Wiley & Sons, (2011).
- Veerarajan T., Engineering Mathematics (for first year), Tata McGraw Hill Publishing Co., (2008).

References

- 1. Grewal B.S., *Higher Engineering Mathematics*, Khanna Publishers, (2012).
- 2. John Bird, Basic Engineering Mathematics (5th ed.), Elsevier Ltd, (2010).
- 3. P.Kandasamy, K.Thilagavathy and K. Gunavathy, Engineering Mathematics Vol. I (4th Revised ed.), S.Chand& Co., Publishers, New Delhi (2000).
- 4. John Bird, Higher Engineering Mathematics (5th ed.), Elsevier Ltd. (2006).

T/SLr

1/0

3

P/R

0/0

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus

DEPARTMENT OF MATHEMATICS

Subject Name: BIO STATISTICS

Prerequisite: None

	, v •		15110.110								1,0		
	re T : Tuto						ect :	R : I	Researc	h C: Cr	edits		
T/L/ETL	: Theory /	Lab / Em	bedded 7	Theo	ry and La	.b							
OBJECT	IVES :												
1. Unders	tand the Ba	sic concept	s in Statis	tics									
	Basic conc												
	tand the Ba												
11.	the Basic co		_	• 1									
5. Analyz	e the Basic	concepts in	n Design	of Ex	periments								
COURS	E OUTCO	MES (Cos):(3-5))									
Students co	ompleting the	course were	able to										
	771 1.1												
CO1		neasures o											
CO2	Evaluate the moments measures of skewness and kurtorsls and to evaluate correlation and												
	regression												7.74.4
CO3		owledge ar plication la				the pro	babi	ility	of a rai	idom va	riable a	nd use a	ddition
CO4		ity to test a				n testing	g of h	ıypo	thesis.				
CO5		nd interpr								'A			
Mapping	of Course	Outcomes	s with Pr	ogra	m Outcor	nes (PO	Os)						
COs/POs		PO2	PO3	PO		PO6	PO	7	PO8	PO9	PO10	PO11	PO12
CO1		L				Н				M		M	M
CO2	L	M				Н				L			Н
CO3	L	Н	L		L	M				L		L	Н
CO4		Н	L		L	M				M			Н
CO5		M	Н	M						M			Н
	ndicates str	ength of c	orrelatio	n H	I – High,	$\overline{M-M}$	ediui	m, I	L – Lov	7			
Category	Basic	Engg	Humanit		Program	Progra		Ope		Practical	/ Inte	rnships /	Soft
	Sciences	Sciences	Sciences & Social core Electives Electives Project Technical Skills										
		Sciences Sciences & Social core Electives Electives Project Technical Skills Sciences cience Science Scien											

Subject Code:

BMA17004

		•	,	•		
Approva	1					

BMA17004 BIO STATISTICS 4 3 1/0 0/0

1. BASICS OF STATISTICS

(12)

Variables – Uni-variate Data – Frequency Distribution – Measures of Central Tendency – Mean – Median – Mode – Quartiles – Measures of Dispersion – The Range – Quartile Deviation – Standard Deviation.

2. CORRELATION (12)

Measures of Skewness& Kurtosis – Bi-variate data – Correlation & Regression.

3. PROBABILITY AND RANDOM VARIABLE

(12)

Definition of Random Experiment - Sample Space - Events: Mutually exclusive events - Exhaustive events - Dependent events and Independent events - Mathematical and Statistical definition of probability - Theorems of addition and multiplication laws of Probability (Without proof) - Conditional probability (Simple problems).

4. SAMPLING (12)

Tests of Significance - Large Sample Tests - Mean - Proportions - Small Sample Tests - t, F & Chi-square Tests -Independence of Attributes – Goodness of Fit.

5. DESIGN OF EXPERIMENTS

(12)

Analysis of Variance: One Way & Two-Way Classification – Design of Experiments – Randomized Block Design – Completely Randomized Block Design - Latin Square Design.

Total no. of Periods: 60

Text books

- 1. Gupta S.C, Kapoor V.K, Fundamentals of Mathematical Statistics, S.Chand& Co, New Delhi (2003).
- 2. Veerarajan T., Probability, Statistics and, Random Processes, Tata McGraw Hill Publishing Co., (2008).

References

- 1. Gupta S.P, Statistical Methods, S.Chand& Co., New Delhi (2003).
- Singaravelu, *Probability and Random Processes*, Meenakshi Agency, (2017).
- 3. Richard Johnson A., Miller & Freund's Probability and statistics for Engineers (9thed), Prentice Hall of India, (2016).

T/SLr

P/R

C L

I Year B.Tech Full Time 2017 Regulation Curriculum & Syllabus

DEPARTMENT OF PHYSICS

Subject Name: MATERIAL SCIENCE

Subject Code:

Subject		J										-,		
BPH170		_	isite : No						3	1		0/1		0/0
L: Lectu	re T : Tuto	rial SLr:	Supervi	sed L	earning l	P : Proj	ect	R : Res	search	C: C	redi	ts		
	: Theory /													
OBJECT	IVES :													
	Design, cond	luct experii	nent and	analyz	ze data.									
	Develop a So			•		scale of	mate	rials						
	Jnderstand t													
4. A	Apply the sc	ience of ma	aterials to	Engin	neering &	Techno	ology	•						
	E OUTCO)										
Students co	impleting the course were able to													
001	D .	Demonstrate skills necessary for conducting research related to content knowledge and laboratory skills												
CO1	Demonstrate skills necessary for conducting research related to content knowledge and laboratory skills. Apply knowledge and concepts in advanced materials and devices.													
CO2														
CO3	Acquired A													
CO4	Ability to												ns.	
CO5	Generate a	nalytical th	ought to	interpı	ret results	& place	e the	m withi	in a bro	ader (conte	xt		
Mapping	of Course	Outcomes	s with Pr	ogran	n Outcor	nes (PC	Os)							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PC	7 P	PO8	PO9	P	O10	PO11	PO12
CO1	Н	Н	M	M	M	L					M	[L
CO2	Н	Н		M	M									L
CO3	Н	Н	Н	Н	M						N	[
CO4	Н	Н	Н	Н	M					Н	M			L
CO5	H M M M L M M L													
	ndicates str	ll .					ediu	m. L-					ı	Ī
Category	Basic	Engg	Humanit		Program	Program		Open		Practic	al /	Inter	nships /	Soft
	Sciences	Sciences	& Social		core	Electiv		Electiv	ves F	Project			ınical	Skills
		Sciences Sciences Skills												

	$\sqrt{}$				
Approval					

BPH17002

MATERIAL SCIENCE

3 2 0/1 0/0

1. CRYSTAL PHYSICS

(9)

Space Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Ceramic Materials & Graphite Structures – Crystal GrowthTechniques (Slow Evaporation Method & Melt Growth)

2. CONDUCTING & SUPERCONDUCTING MATERIALS

(9)

Introduction - Classical Free electron theory of Metals - Derivation of Electrical conductivity - Thermal Conductivity - Deduction of Wiedemann Franz law - Fermi Energy & Fermi Function - Density of Energy States - Qualitative Analysis of Conductors, Semiconductors and Insulators - Some Examples of Important Electrical Materials

Superconducting Materials: Transition temperature – BCS Theory – Properties of Superconductors – Type I & Type II Superconductors – Superconducting materials - Low & High Temperatures Superconductors – AC& DC Josephson Effects – Applications of Superconductors – Basic Concepts of SQUID, Magnetic Levitation.

3. SEMICONDUCTING MATERIALS

(9)

Bonds in Semiconductors – Types – Importance of Germanium & Silicon – Other Commonly Used Semiconducting materials - Carrier concentration in Intrinsic Semiconductors (Electron and Hole Density) – Band Gap Determination – Carrier Transport in Semiconductors – Drift, Mobility and Diffusion – Hall effect – Determination of Hall Coefficient and its Applications – Dilute Magnetic Semiconductors (DMS) & their Applications – Schottky diodes.

4.MAGNETIC& DIELECTRIC MATERIALS

(9)

Magnetic Materials: Types – Comparison of Dia, Para and Ferro Magnetism – Heisenberg's interpretation –Domain theory – Hysteresis – Soft and Hard Magnetic Materials – Application of Magnetic Resonance Imaging – Important Magnetic, Insulating & Ferro electric materials.

Dielectric Materials: Electrical Susceptibility – Dielectric Constant – Concept of Polarization – Frequency and Temperature Dependence of Polarization – Dielectric loss – Dielectric breakdown – Commomly used Dielectric materials and their practical applications.

5.OPTICAL, OPTOELECTRONIC AND NEW MATERIALS

(9)

Properties & Classification of Optical Materials – Absorption in Metals, Insulators & Semiconductors – Composite Materials – Nano Materials – Bio Materials – MEMS – NEMS – LED's – Organic LED's – LCD's – Laser diodes – Photodetectors – Tunneling – Resonant Tunneling Diodes (RTD's) – Carbon Nanotubes – Various Ttypes of Optical Materials with Properties.

B.Tech Regulations 2017 Approved by the Academic Council------ Revision 3

Total No. of Periods: 45

T/SLr

P/R

Text Books

- V. Rajendran&Mariakani "Materials Science", Tata McGraw Hill (2004).
- P.K.Palanisamy," Materials science", Scitech Publication(2002).

Reference Books

Subject Code:

BCH17002

- 1. Dr. SenthilKumar, "Engineering Physics II" VRB Publishers (2016).
- 2. V. Arumugam, Materials Science", Anuradha Agencies, (2003 Edition).
- 3. Pillai S.O., "Solid State Physics", New Age International, (2005).

DEPARTMENT OF CHEMISTRY

Subject Name: ENGINEERING CHEMISTRY - II

		Prerequ	isite : No	one					3	2	0/1	0/0
L : Lectu	re T : Tuto				arning l	P : Proi	ect R:	Research	C: Cr	edits		
	: Theory /		•		_	·						
OBJECT	IVES :											
	nparting the	basic conce	pts of phas	se rule an	d apply t	the same	to one an	d two com	ponent s	ystems.		
											es, alloys and	l nano
	naterials.											
	o impart a so					emistry ir	volving o	different ap	plication	orient	ed topics	
	ntroducing sa											
	To give an overview on modern analytical techniques E OUTCOMES (Cos): (3 – 5)											
		,	, ,))								
Students co	mpleting the	course were	e able to									
CO1	1. U	nderstand th	ne science	of phase	equilibri	a and app	ply the ph	ase rule to	different	systen	ns.	
CO2		ain an overv				ıls such a	s Lime, C	Cement, Lu	bricants,	Abrasi	ves,	
		efractories,										
CO3								ets such as	Soaps an	d Dete	rgents,also ga	aining
CO4		e basic know iscover the										
CO4								41	1: 4:			
CO5		emonstrate			•			y their app	ncations	•		
	of Course							1			1	T
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0 PO11	PO12
CO1	\mathbf{L}											L
CO2	M		L			L	M					L
CO3	M L L											

CO4	M	M	L	L			M						M
CO5	M				M								H
H/M/L in	dicates str	ength of c	orrelatio	n H-	High,	$M - M\epsilon$	dium	ı, L	L – Low				
Category	Basic Sciences	Engg Sciences	Humanit & Social Sciences	C	rogram ore	Prograi Electiv		Ope Elec	n etives	Practical Project	Į	Internshi os / Fechnical Skills	Soft Skills
	$\sqrt{}$												
Approval													

BCH17002

ENGINEERING CHEMISTRY - II

3 2 0/1 0/0

1. PHASE EQUILIBRIA

(8)

Introduction – Definition of terms involved in phase rule. Derivation of Gibbs phase rule – Applications to one component system – water system. Binary system – Eutectic system – Pb – Ag system, Bi – Cd system . Thermal analysis – Cooling curves.

2. MATERIAL CHEMISTRY

(10)

Cement – Manufacture , Chemistry of setting and hardening .Lubricants – Requirements of good lubricants, Mechanism, Properties of lubricants, Classification – Examples.Abrasives—Classification –Moh'sscale-Hardandsoftabrasives,Preparation of artificial abrasives(siliconcarbide,boroncarbide),Applications of abrasives.Refractories— Classification, Properties-Refractoriness, RUL, Porosity, ThermalspallingAlloys—Classification of alloys—Purposeofmakingalloys—Ferrous and non-Ferrous alloys—Heat treatment Nano materials – properties, carbonnano tubes – properties, fabrication – carbon arc method, laser vapourization method.

3. APPLIED CHEMISTRY (9)

 $Soaps and detergents: Soaps - Saponification \ of \ oils \ and \ fats, \ manufacture \ of \ soaps, \ classification \ of \ soap - soft \ soap, \ medicated \ soap, \ herbal \ soap, \ shaving \ soap \ and \ creams.$

Detergents – Anionic detergents – manufacture and applications, Comparison of soaps and detergents.

Rocket propellants and explosives:Rocket propellants – characteristics, solid and liquid propellants – examples.Explosives-Introduction, characteristics, classification, Oxygen balance, preparation, properties and uses of detonators, low explosives and high explosives, Dynamites, Gun cotton, Cordite.

Food adulterants- Common adulterants in different foods – milk and milk products, vegetableoils, and fats, spices and condiments, cereals, pulses, sweetening agents and beverages, Contamination with toxic chemicals – pesticides and insecticides.

4. FUELS & COMBUSTION (9)

Introduction Fuels – classification – Calorific value – GCV, LCV.SolidFuels—Coal-Proximate Analysis, MetallurgicalCoke—ManufactureofMetallurgicalCoke—LiquidFuel—Refining of Petrol, Synthetic Petrol—ManufacturingProcess—HydrogenationofCoal, Polymerization,Cracking—Knocking—OctaneNumber—LeadedPetrol(or)Anti—knocking – Cetane Number—IgnitionLag—Gaseousfuels—CNG—LPG—WaterGas, Producer gas—Biogas-Combustion—FlueGasanalysis—Orsat's method.

5. ANALYTICAL AND CHARACTERIZATION TECHNIQUES

(9)

Electron microscopes: Scanning electron microscope & Transmission electron microscope, instrumentation and applications Absorption and Emission Spectrum - Beer - Lambert's law. Visible and UV Spectroscopy - instrumentation - Block diagram - working. IR Spectroscopy - instrumentation - Block diagram - molecular vibrations - stretching and bending - H₂O₂O₃ CO₂. -Characterization of some important organic functional groups. Chromatographic techniques - column, thin layer and paper.

Total number of periods: 45

Textbooks

1. C. S.Unnithan, T. Jayachandran P. Udhayakala, "Industrial Chemistry", Sreelakshmi Publications (2009).

2.

References

- 1. P.C. Jain & Monika Jain, "Engineering Chemistry", DhanpatRai publishing Co., (Ltd.) (2013).
- 2. B. R. Puri ,L.R. Sharma &M.S.Pathania, "Principles of Physical Chemistry", Vishal publishing co., (2013).

DEPARTMENT OF ENGINEERING SCIENCES

Subject Co BES17003		Subject	Name:	ENVIR	ONME	NTAL	SCIENO	CE	С	L	T/SLr	P/R
		Prerequ	isite : No	one					3	3	0/0	0/0
L : Lecture					_		ect R:	Researc	h C: C	redits		•
T/L/ETL:	Theory /	Lab / Em	bedded '	Theory	and La	b						
OBJECTI												
	acquire kr								7			
	acquire kr	_		•	pes of E	Environn	nental po	ollution				
	o know mor o gain unde				nd tha E	nvironn	ont					
	o attain fam											
3. 10	o accarri rann	inditty of	naman p	оринино	n una D		CIIC					
COURSE	OUTCON	IES (Cos	(3-5)	5)								
Students con				,								
CO1	To known a	about Envi	ironment	and Eco	svstem	& Biod	iversity					
								nal and N	luclear F	Pollutio	ons and Soli	d Waste
											ood resource	
	To discove											
CO4	To identify	its proble	ms and c	concerns	climat	e chang	e, globa	1 warmin	g, acid	rain, o	zone layer d	epletion
	etc.,	_							_			-
	To explain	•	lfare prog	gramme	s and ro	ole of in	formatio	n techno	logy in l	numan	health and	
	environme											
Mapping of								1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10 PO11	PO12

CO1						M	Н		M				M
CO2						M	Н				M		M
CO3						M	H		M				M
CO4						M	H		M		M		M
CO5						M	H				M		M
H/M/L ir	dicates str	ength of c	orrelatio	n H-	- High,	$M - M\epsilon$	ediur	m, I	L – Low	7			
Category	Basic Sciences	Engg Sciences	Humanit & Social Sciences	c	rogram ore	Prograi Electiv		Ope Ele	en ctives	Practica Project	1/	Internshi ps / Technical Skills	Soft Skills
Approva			V										

BES17003

ENVIRONMENTAL SCIENCE

3 3 0 0/0

Unit I Environment and Ecosystem

(9

Definition, Scope and Importance of environment – need for public awareness – concept, structure and function of an ecosystem - producers, consumers and decomposers – energy flow in the ecosystem. Biodiversity at national and local levels – India

Unit II Environment Pollution

(9)

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Nuclear hazards (g) E-Wastes and causes, effects and control measures

Unit III Natural Resources

(9)

Forest resources: Use and over-exploitation, deforestation. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems.

Unit – IV Social Issues and the Environment

(9)

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns climate change, global warming, acid rain, ozone layer depletion, nuclear accidents, central and state pollution control boards- Public awareness.

Unit - V Human Population and the Environment

(9)

Population growth, variation among nations – population explosion, environment and human health – human rights – value education – HIV/AIDS

- women and child welfare - role of information technology in environment and human health

Total Number of Periods: 45

Text Books

B.Tech Regulations 2017 Approved by the Academic Council------ Revision 3

- 1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education (2004).
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGrawHill, NewDelhi, (2006).

References

- 1. Vairamani, S. and Dr. K. Sankaran. Elements of Environmental and Health Science. Karaikudi: KPSV Publications, 5th Edition, July, 2013.
- 2. Ifthikarudeen, Etal, **Environmental Studies**, Sooraj Publications, 2005.
- 3. R.Murugesan, **Environmental Studies**, Millennium Publishers and Distributors, 2nd Edition, July, 2009.